
UGP Report : Groupoid Interpretation of

Martin-Lof Type Theory

Divyanshu Shende
Roll No.: 13264

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur.

email : divush@cse.iitk.ac.in

Mentor : Dr. Anil Seth,
Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur.
email : seth@cse.iitk.ac.in

November 24, 2016

Abstract

Uniqueness of Identity Proofs (UIP) asks whether elements in identity
sets, defined in intensional Martin-Löf Type Theory, are equal for all
sets? In 1996, Martin Hofmann and Thomas Streicher[HS96] answered
this in the negative by giving a Groupoid Interpretation of Martin-Löf
Type Theory. We look at this result.
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1 Martin-Löf Type Theory

To say that A is a type we write A type. While defining a type, we must say
what an object of that type is and when two objects are equal. Let a be an
object satisfying the conditions for type A, that a is an object of the type A is
denoted by a : A. This is also called a type judgement. That A and B are two
definitionally equal types is denoted by A = B. a and b are definitionally equal
(i.e., have same normal form) objects of type A is denoted by a = b : A. In this
type theory, we can also make judgements under a set of assumptions. We say
that A type [x : C] to denote that A is a type under the assumption that x is an
object of type C. We can also say that A is a family of types over C. In case we
have more than one assumptions, each holds in the context of the previous ones.
For instance, if we have the assumption that A type [x1 : A1, x2 : A2, ..., xn : An],
then xi : Ai [x1 : A1, x2 : A2, ..., xi−1 : Ai−1]. Suppose A type [x : C], then
A[x← c] is a type (provided c : C)which we obtain by substuting c for x. Also,
we have that a[x← c] : A[x← c].
We can also define a special type Set whose objects are sets. For detailed
description and examples of this type, we refer the reader to [BNS90].

1.1 Dependent Function Space

Let A be a type and B be a family of types over A. The type of all (dependent)
functions fromA toB is denoted by (x : A)B. An object of this type is a function
from A to B. Suppose f : (x : A)B, then f(a) : B[x← a] for all a : A. Identical
objects in A give identical objects on function application. Two functions f, g
of the type (x : A)B are the identical iff for all a : A, f(a) = g(a) : B[x← a].

1.2 Propositional Equality

Two objects are definitionally equal iff they have the same normal form. For
instance 5 = 5 is a definitional equality because, in the definition of natural
numbers, both have the same normal form, i.e., S(S(S(S(S 0)))).
In contrast, take a look at commutativity property of addition addition. It is
formalized as, (a, b : Nat) a+ b = b+ a. When we substitute values for a and b,
then we can show (by computing) that the two sides have the same normal form.
However, commutativity in general is a theorem and hence requires a proof .
This is the idea behind propositional equality and is captured using Identity
Sets.
For any set A and two objects a, b : A, we define a set Id(A, a, b). The elements
of this set are the proofs that allow us to deduce a = b. We can define a
constructor id for the set Id as id : (A : Set)(a : A)Id(A, a, a). The constructor
id takes a set A, an object a : A and gives a proof that a = a. We formalize
this idea in the next section.

2 Identity Sets

Formalizing propositional equality led to the definition of Identity Sets. We
discuss them in detail here. We define three constants as below.
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1. Defining the constructor for Propositional Equality - Id : (A : Set) (a, b :
A) Set

2. Defining the constructor for reflexivity - refl : (A : Set) (a : A)Id(A, a, a)

3. Defining the elimination operator -
J : (A : Set) (P : (a, b : A)(s : Id(A, a, b)Set) (d : (x : A)P (x, x, refl(A, x, x))
(l,m : A) (s : Id(l,m,A)) P (l,m, s)

The Id constructor can be read as follows. Id is a (dependent) function that
takes as argument a set A and two elements a, b : A. The output is a set that
we call Id(A, a, b). The definition of refl can be read in the same way. Note
refl(A, a, a) : Id(A, a, a) so refl actually gives a proof that a = a in A.

The elimination operator is more involved. The argument P in it can be thought
of as a propositional function on A. So, P takes two arguments a, b : A and a
proof s : Id(A, a, b) and returns a set. Argument d in the above definition gives
an element in the set P (A, a, a). Essentially, J does the following : it takes a
set A, a dependent set P on A, a method d to form elements in P for equal
elements in A, two elements l,m : A and a proof s : Id(A, l,m) and gives an
element of the type P (l,m, s). We also have the following (definitional) equality
imposed on J .

J(A, P, d, a, a, refl(A, a, a)) = d(a) : P (a, a, refl(A, a, a))

The elimination operator looks cumbersome but is powerful. It’s main power
lies in suitable defining P . The following constructs can be derived using J ,
their derivations are given [BNS90] so we shall not repeat them here :

1. subst : (A : Set) (P : (a : A)Set) (s : Id(a, b, A)) P (a)→ P (b)

2. sym : (A : Set) (a, b : A) Id(A, a, b)→ Id(A, b, a)

3. trans : (A : Set) (a, b, c : A) Id(A, b, c)→ Id(A, a, b)→ Id(A, a, c)

subst gives an element of P (b) given P (a) and a proof that a = b. sym derives
a proof of b = a given a proof of a = b. Transitivity composes proofs of b = c
and a = b to give a proof of a = c. The order of aplying proofs in transitivity is
the application order.

2.1 Uniqueness of Identity Proofs (UIP)

In the language described above, UIP simply asks for all types, whether or not
any two terms of Id(A, x, y) are equal. In other words, does there exist a unique
proof of the propositional equality x = y? Formally, this is stated as,

UIP := (A : Set) (a, b : A) (s1, s2 : Id(A, a, b)) Id((Id,A, b), s1, s2)

In their paper[HS96], Hofmann and Streicher gave an interpretation of type
theory where UIP is not derivable. Therefore, the UIP , in general, is not
derivable in Martin-Löf Type Theory.
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3 Semantics

In giving the groupoid interpretation, our aim is to give a semantics for depen-
dent type theory. However, due to dependent types, proving that our interpre-
tation follows all the rules of the type theory could be cumbersome. For this
reason, previous work in this area led to formalization of an abstract notion of
semantics : category-theoretic semantics, which has proven to be useful. The
correctness of such semantics has been established. We can use this abstract
semantics and simply show that the mathematical structure of our interpreta-
tion forms a valid instance of the abstraction. This way we know that we have
a valid interpretation. In our case, the abstract semantics framework used is
Category with Families (CwF) first defined by [P96]. CwF captures the notion
of type dependency. For details on abstract semantics and CwF, we refer the
reader to [Hof97]. We shall define CwF in a later section.

4 The Groupoid Interpretation

The groupoid interpretation treats non-dependent types as groupoids. Closed
terms of these types then become the objects of the groupoid. The arrows(or
morphisms) are elements of the identity sets. Isomorphism accounts for sym-
metry and transitivity is accounted for by composition rule. The existence of
identity morphism accounts for reflexivity. We now proceed to define other
aspects of type theory. The interpretation requires some basic knowledge of
category theory, namely categories, groupoids, functors and natural transfor-
mations. The reader can look these up from [Pie91].

4.1 Families of Groupoids

Let Γ be a groupoid. We define a family of groupoids over Γ as a functor
A : Γ→ GPD with the following properties[HS96] :

1. For every γ ∈ Γ, A(γ) is a groupoid.

2. For every morphism f : g → g′ in Γ, A(f) : A(g)→ A(g′) is a functor.

Using functorality of A and symmetry in Γ, we can show that all functors A(f)
are actually isomorphisms.

4.1.1 Notations

Given f : g → g′ and a family of groupoids A, over Γ, we write f. for the
functor A(f). So, for x ∈ A(g), f.x = A(f)(x). Ty(Γ) is used to denote the
collection of families over Γ. Thus, A ∈ Ty(Γ). Also, if h : ∆ → Γ, then A ◦ h
(denoted by A{h}) is clearly a functor from ∆→ GPD and is in Ty(∆).

4.1.2 Dependent Objects

A dependent object M of A, (where A ∈ Ty(Γ)), consists of the following :

1. For every γ ∈ Γ, an object M(γ) ∈ A(γ).
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2. For every morphism f : g → g′, a morphism M(f) : f.(M(g)) → M(g′).
Note that M(f) is a morphism in A(g′).

The reason M(f) is defined in such a manner is because it is not necessary
that f.(M(g)) = M(g′). Note that f.(M(g)) = A(f)(M(g)), which is the image
of M(g) in A(g′) under A(f). It is interesting to note that the identity and
composition laws for M hold apart from a small adjustment required in the
composition part. We use the notation Tm(A) to represent the collection of
dependent objects of A.

4.2 Category with Families

As mentioned earlier, our aim is to fit our theory into the framework of an
abstract semantics, namely category with types. Before moving further, let us
look at what CwF consists of[HS96] :

• A category of contexts and substitutions C with [] as the terminal object
representing empty context.

• A functor Ty : Cop → Set, which assigns, to every type Γ, a collection of
types that depend on it.

• For all Γ ∈ C, a collection of terms Tm(Γ, A), where A ∈ Ty(Γ) along
with a function Tm(h,A) : Tm(Γ, A)→ Tm(∆, A{h}), where h : ∆→ Γ.

• A context extension, Γ.A, which has the property that homset C(∆,Γ.A)
is isomorphic to { (h,M) | h : ∆→ Γ and M ∈ Tm(∆, A{h}) }

In our interpretation, we have already described the category of contexts as
GPD and defined Ty, Tm. Now, we need to define context extension, which we
do below.

4.3 Context Extension

Let A ∈ Ty(Γ). We define Γ.A as a category as follows. The objects of Γ.A are
pairs (γ, a), where γ ∈ Γ and a ∈ A. Given two objects (γ, a) and (γ′, a′), we
define a morphism between them to be a pair (p, q) such that p : γ → γ′ and
q : p.a → a′. Let (p, q) : (γ, a) → (γ′, a′) and (p′, q′) : (γ′, a′) → (γ′′, a′′). Then
their composition of (p′, q′) ◦ (p, q), where is given by (p′ ◦ p, q′ ◦ (p′.q)). Inverse
of (p, q) is (p−1, p−1.q−1).
We note that even though A is a functor, the context extension Γ.A is a groupoid
and this is why, we can define families over this new context. We also define a
projection function p as follows. p(γ, a) = γ and p(p, q) = p. Thus p is a functor
from Γ.A to Γ.
We can also show that the two sets are isomorphic as required by the CwF
abstraction.[HS96] With that, we have shown that our interpretation thus far
forms an instance of CwF. Now we interpret the remaining syntax to complete
the interpretation.
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4.4 Dependent Function Space

We define Π(A,B) to be the type of (dependent) functions from A to B. In
this section, we also aim to interpret abstraction and application. Suppose
A ∈ Ty(Γ) and B ∈ Ty(Γ.A), then we have Π(A,B) ∈ Ty(Γ). Before coming
to abstraction and application, we define a few things. For dependent object
M ∈ Tm(A), we associate a functor M : Γ→ Γ.A. The object part is given by
M(γ) = (γ,M(γ) and the morphism part is given by M(p) = (p,M(p)). Given
f , such that p ◦ f = idΓ, we must have f(γ) = (γ,M(γ)) and f(p) = (p,M(p))
for fixed M . This allows us to view Tm(A) as a groupoid. A morphism h
between M and N is given by a collection of morphisms hγ : M(γ) → N(γ),
such that for all p : γ → γ′, we have h(γ′) ◦M(p) = h(γ) ◦ N(p). We use this
interpretation as groupoid below.

We now define the family Π(A,B)(γ) as a collection of terms in Bγ viewed
as a groupoid, where Bγ is a family of groupoids over A(γ) given by,[HS96]

• Bγ(a) = B(γ, a)

• Bγ(p)(α) = (idγ , p).α

We define abstraction of termM ∈ Tm(B) as a term λA,B(M) ∈ Tm(Π(A,B))
and define it as follows [HS96] :

• λA,B(M)(γ)(a) = M(γ, a)

• λA,B(M)(idγ)(l) = M(idγ , l)

Also, we define λ−1
A,B ∈ Tm(B) to interpret application as follows[HS96] :

• λ−1
A,BM(γ, a) = M(γ)(a)

• λ−1
A,BM(p, q) = M(γ′)(q) ◦ (idgamma′ , q).M(p)p.a

It is noteworthy interpretation of Tm(Bγ) as a groupoid allowed us to define
λ−1
A,B

4.5 Identity Sets

We interpret identity sets as a family of groupoids over a groupoid whose ele-
ments are (A, a1, a2). The morphisms in this category are given by (p, q1, q2)
so that p : A → A′ is an isomorphism of groupoids and qi : p(ai) → a′i. Our
identity sets are defined as follows[HS96]:

• Id(A, a1, a2) = ∆((A(a1, a2)), where ∆ represents the discrete category
with only identities as morphisms.

• Id(p, q1, q2)(s) = q2 ◦ s ◦ q−1
1 , where s ∈ A(a1, a2).

4.5.1 Reflexivity

Now, we need to define refl which is a dependent term of type Id. We now
define the constructor refl as a term in ∆(Id(A, a, a)) as follows[HS96]:

• refl(A, a) = ida ∈ A(a, a)

• For morphism, we observe that q◦p(refl(A, a))◦q−1 = refl(A′, a′), where
(p, q, q) : (A, a, a)→ (A′, a′).
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4.5.2 Elimination

All that remains now, is to define elimination operator J . After currying, we
can show that we need to define a term over J ∈ Tm(C(a1, a2, s)[Γ, a1 : A, a2 :
A, s : Id(A, a1, a2)]), where Γ = [A : Set, C : (a1, a2 : A, s : Id(A, a1, a2))Set, d :
(a : A)C(a, a, refl(A, a, a))]. Note that J is a term of C in the context. The
context here is Γ given by the appropriate context extension. Let x be an term
of the context given by (γ, a1, a2, s). We define f(x) as follows:
f(x) := (idγ , ida1 , s, ?)
Here ?, is a morphism of the discrete category. f(x) essentially is a morphism
in the category of our context Γ. Also, let x′ = (γ′, a′1, a

′
2, s
′) and let h : x→ x′,

so that h = (p1, q1, q2, ?). We define the object J as follows[HS96]:

• J(x) := f(x).d(γ, a1). (Note that d(γ, a1) is an object of C(γ, a1, a1, refl(A, a1))).

• The morphism is defined by J(h) = f(x′).d(p, q1).

In the above, we have p : γ → γ′. It is a simple exercise to verify that the
definitions are indeed valid. See [HS96] for the proofs.

5 Verdict on UIP

We end the report with the following theorem on UIP.

Theorem 1. [HS96] There does not exist any term of the type UIP.

Proof. (by contradiction)
Suppose a term u existed. Consider the one object groupoid Z2. From category
theory, we know that it has only one element x and two morphisms distinct
idx and p such that p ◦ p = idx. By definition of UIP type, u(A, x, x, p, idx)
(remember u is a UIP term), is a proof that p = idx. However, we know that
they must be distinct. Therefore, such a u cannot exist.

The groupoid interpretation is sound, and therefore we can extend the above
claim to say that we cannot define a closed term for UIP.
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