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Abstract

Spectral Graph Theory aims to study Graph Properties by looking at
the eigenvalues and eigenvectors of matrices associated with the Graph.
One such property is connectivity of a graph. There is a basic fact in
Spectral graph theory that λk > 0 if and only if G has at most k -
1 connected components. Luca Trevisan and Shayan Oveis Gharan, in
their paper Partitioning Into Expanders[GT13], prove a stronger version
of this fact by guaranteeing the existence of a clustering satisfying certain
properties. We review the result and also provide a brief background on
the Graph Partitioning Problem.
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1 Introduction

Spectral Graph Theory studies how graph properties relate to the eigenvalues,
eigenvectors and characteristic polynomial of the matrices associated with the
graph. One such matrix is called the Laplacian of the graph which is defined
as L := D - A where A is the Adjacency Matrix and D is a diagonal matrix
called Degree Matrix satisfying Di,j = d(vi) where d(vi) is the degree of the ith

vertex. Let λ1, λ2...λn denote the n eigenvalues of L. We index these in order
so that λ1 ≤ λ2 ≤ ... ≤ λn. We observe the following facts :

1. λ1 = 0 with eigenvector 1. Here, 1 is the all-1’s vector.

2. L is positive semi-definite and therefore has all real, non-negative eigen-
values and the eigenvectors are orthogonal.

3. λk > 0 if and only if G has at most k - 1 connected components.

Graph Clustering is a question closely related to Graph Connectivity. In the
paper by Gharan and Trevisan[GT13], we see this connection. Clustering can be
studied as a Graph partitioning problem. However, we need a way to compare
two different clusterings to decide the better one, before we convert this into an
optimization problem. A k-clustering is a partition on the the vertices of graph
into k disjoint sets V1, V2, ...Vk such that their union is V .

Intuitively, it is clear that a good clustering is one in which a the weight
between two clusters in minimum and each cluster is highly connected. By
highly connected, we mean that it is not possible to disconnect the cluster by
removing just a few edges. There have been several measures proposed and in
the next section, we see some of them. Throughout this report, let G = (V,E)
be a weighted, undirected graph with n := |V |.

2 Previous Work and Some Definitions

One of the earliest results dates back to Cheeger[Che70]. He gave the famous
Cheeger’s Inequality. A variant of that inequality is

λ2
2
≤ φ(G) ≤

√
2λ2

Where φ is called the conductance. We formally define conductance but before
that we give two more definitions. For S ⊆ V , define vol(S) :=

∑
v∈S(

∑
u∈V w(v, u)).

Also, define w(S, S) :=
∑

u∈S,v∈S w(u, v). Now we are ready to define conduc-
tance of S in G.

φ(S) :=
w(S, S)

vol(S)

Intuitively, we can think about the conductance of a set as the ratio of the weight
of edges going out(w(S, S)) to the weight of the total number of edges(vol(S)).
We define conductance of a graph as follows.

φ(G) := min
S:vol(S)≤vol(V )/2

φ(S)
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We give one more definition. Let A1, . . . , Ak denote k disjoint subsets of V .
Note that these need not be a partition of V and some of them can possibly be
empty. Now, define,

ρ(k) := min
A1...Ak

max
1≤i≤k

φ(Ai)

A higher order version of Cheeger’s inequality was given by James Lee,
Gharan and Trevisan as follows

Theorem 1. ([LOT12]) For any graph G and any k > 2,

λk
2
≤ ρ(k) ≤ O(k2)

√
λk

We make a few observations. Note that by definition, ∀S ⊆ V, 0 ≤ φ(S) ≤ 1.
Therefore, we also have 0 ≤ ρ(k) ≤ 1. Also, ∀k, ρ(k) ≤ ρ(k + 1) and ρ(1) = 0.
Also note that ρ(2) = φ(G) by definition of ρ and φ. One more important fact
regarding conductance is that finding the conductance of a given graph is NP-
Hard[GJ79]. Now let us look at the measures that have been proposed for the
quality of a k-clustering.

2.1 Measures for clustering

Based on the definition of conductance give in the previous section, one possible
approach that comes to mind is to find k sets of small conductance. However, a
set of small conductance may even be disconnected inside as conductance only
looks at the ratio of edges going outside. Kannan, Vempala and Vetta[KVV04]
proposed that to measure the quality we need only look at two things : the
inside conductance of the individual clusters and the weight of the inter-cluster
edges. By inside conductance, they mean the conductance of the graph induced
by the cluster P which can be written as φ(G[P ]). They call a clustering a
(α, ε)-clustering if ∀i, φ(G[Ai]) ≥ α and total edge weight is atmost ε fraction
of the total edge weight. In their paper[GT13], Gharan and Trevisan explore
another bi-criteria measure.

Definition 1. ([GT13]) k-disjoint subsets A1, . . . , Ak of V , are a (φin, φout)-
clustering, if ∀i, 1 ≤ i ≤ k,

φ(G[Ai]) ≥ φin and φ(Ai) ≤ φout

At this point we would like to make an observation that Trevisan and Gharan
aim to minimize φ(Ai) whereas the result from [KVV04] can be seen as trying
to minimize

∑
i φ(Ai). There is a result by Mamoru Tanaka[Tan12] which is

stated as follows.

Theorem 2. ([Tan12]) If ρ(k + 1) > 3k+1ρk for some k, then G has a k-

partitioning which is a
(ρ(k + 1)

3k+1
, 3kρ(k)

)
-clustering.

Unfortunately, the above result requires an exponential gap between ρ(k) and
ρ(k + 1). Trevisan and Gharan’s main existential theorem in [GT13] asks for
a much smaller gap. Also, Tanaka’s result requires the computation of an op-
timal sparsest cut, a problem known to be NP-complete. Therefore his result
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cannot be converted into an algorithm directly. Trevisan and Gharan provide
an algorithmic version of their result that does not depend on any kind of ap-
proximation of the problem.

3 The Existential Theorem

In this section we present the main theorem from Trevisan and Gharan’s paper.
The theorem is as stated below.

Theorem 3. (Existential Theorem). If ρ(k + 1) > (1 + ε)ρ(k) for some k and
some 0 < ε < 1, then

1. ∃ k disjoint subsets of V that are
(ε · ρ(k + 1)

7
, ρ(k)

)
-clustering.

2. ∃ k-partitioning of V that is a
(ε · ρ(k + 1)

14k
, kρ(k)

)
-clustering.

Before proving this theorem, let us see how we can use it. One such applica-
tion of the above theorem arises in proving a generalization of the Higher Order
Cheeger inequality.

Theorem 4. ([GT13]) If λk > 0 for some k ≥ 2 then ∃l, 1 ≤ l ≤ k−1 such that

V can be partitioned into sets P1, . . . , Pl, that is
(

Ω
(λk
k2

)
, O(l3)

√
λl

)
-clustering.

Proof. We use the Existential Theorem to prove this theorem. Suppose λk > 2
for some k. Let l be the largest index such that (1 + 1/k)ρ(l) < ρ(l+ 1). There
must exist such l, 1 ≤ l < k since ρ(1) = 0. So, we have,

ρ(k) ≤ (1 + 1/k)k−l−1ρ(l + 1) ≤ e.ρ(l + 1)

By part 2 of the Existential Theorem, we have a partition P1, . . . , Pl which
is a (ρ(l + 1)/(14l · k), lρ(l))-clustering. Here ε is 1/k. The result follows by
simplification of the bounds of the l-clustering.

4 Notations

In this section we develop a few notations. Let S, T ⊆ V , define,

w(S → T ) :=
∑

u∈S,v∈T\S

w(u, v)

For S ⊆ P ⊆ V , define,

ϕ(S, P ) :=
w(S → P )

vol(P\S)
vol(P ) · w(S → V \ P )

We try to explain the two definitions. The first simply is the weight going from
S to T . We exclude weights of the edges in the intersection. Note that we do
not require S and T to be disjoint so, in general, w(S → T ) need not be the
same as w(T → S). However, if S and T are disjoint, then it is the same.

Now we come to the second definition. If we choose S such that vol(S) ≤
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vol(P )/2, then the volume ratio in the denominator is a number between 0.5
to 1. If P has a high inside conductance and low outside conductance, then
S must have a high conductance in the induced subgraph G[P ]. This means
the number of edges from S to P is high but the total number of edges from S
leaving P is small. This gives w(S → P ) ≥ w(S → V \ P ).Thus ϕ(S, P ) must
have a lower bound.
Conversely, if ϕ(S, P ) has a lower bound for all S ⊆ P then P must be a good
cluster!

5 Proof of Existential Theorem

5.1 Proof Idea

The proof idea is simple. We start with k-disjoint subsets A1, . . . , Ak which
satisfy φ(Ai) ≤ ρ(k). These are guarenteed to exist by the definition of ρ(k).
We then refine these sets to create sets B1, . . . , Bk such that φ(Bi) ≤ φ(Ai).
We do so using an algorithm. An analysis of the algorithm proves the part 1 of
the existential theorem.
We then use the sets B1, . . . , Bk to construct a k-partitioning P1, . . . , Pk. In our
k-partitioning, the sets B1, . . . , Bk form the ”backbone”. For each S ⊆ Pi \ Bi

we decide where to put it by trying to minimize the weight from S to the other
clusters. A lemma proves the fact that the above approach is correct.

5.2 Proof of the First Part

Let A1, . . . , Ak be k-disjoint sets with φ(Ai) ≤ ρ(k), for1 ≤ i ≤ k. We run the
following algorithm[GT13] for each Ai. Note that the algorithm below need not
run in polynomial time.

Algorithm 1 Refinement of A1, . . . , Ak

Input: Ai

Output:Bi satisfying properties given below.
Bi = Ai

while (∃ S ⊂ Bi such that ϕ(S,Bi) ≤ ε/3) do
Update Bi to S or Bi \ S whichever has lower conductance in G.

return Bi

The above algorithm clearly terminates as we only consider proper subsets
of Bi and the size of Bi is finite initially. After the termination of the algorithm,
we have ϕ(S,Bi) ≥ ε/3. Now we show that φ(Bi) never increases throughout
the loop. This ensures that φ(Bi) ≤ φ(Ai). The proof is by induction. The
proof of the inductive step is in the following lemma.

Lemma 1. After any iteration of the loop, if ϕ(S,Bi) ≤ ε/3, then
min{φ(S), φ(Bi \ S)} ≤ φ(Bi)

Proof. Let T = Bi \ S.
We can show, using vol(T ) ≤ vol(Bi) and the terminating condition and the
definition of ϕ(S,Bi) that,
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w(S → T ) ≤ ε

3
· w(S → V \Bi)

Also, we can see that

max{φ(S), φ(T )} ≥ ρ(k + 1) ≥ (1 + ε)φ(Ai) ≥ (1 + ε)φ(Bi)

where the last inequality follows by the induction hypothesis.

Using the above, we do a case based analysis of which of φ(S) or φ(T ) is max-
imum. Then, using the first inequality gives us the proof after some manip-
ulation. We show the proof of one of the cases, φ(T ) ≥ (1 + ε)φ(Bi). Note
that

φ(T ) =
w(S → T ) + w(T → V \Bi)

vol(T )

We have simply used the definition of conductance and expressed w(T, T ) as a
sum of two sets of edges : Those which go from T to S(=w(S → T )) and those
which go outside Bi(=w(T → V \Bi)). We have used the fact that since S and
T are disjoint, w(S → T ) = w(T → S).
Now we write,

φ(S) =
w(Bi → V )− w(T → V \Bi) + w(S → T )

vol(S)

The above simplifies to give φ(S) ≤ φ(Bi). The other case can be dealt with in
a similar fashion. This completes the proof of the lemma.

The lemma establishes that after the termination of the algorithm, φ(Bi) ≤
φ(Ai) ≤ ρ(k). Now we need only prove that the inside conductance has a

lower bound. This is achieved by using the fact that φG[Bi](S) ≥ w(S→T )
vol(S) since

volG[Bi](S) ≤ volG(S). With a little manipulation, and using the assumption
that S has at most half the volume of Bi, we can show that,

φG[Bi](S) ≥ ε

7
·max{φ(S), φ(T )}

Since max{φ(S), φ(T )} is bounded below by ρ(k+1), we get the required upper
bound. This completes the proof of the first part of the existential theorem.

5.3 Proof of the Second Part

We use the sets B1, . . . , Bk developed in the first part as backbone of our par-
titioning and merge the remaining vertices with them to construct P1, . . . , Pk.
We run the following algorithm[GT13]. Note that the algorithm provides no
guarantee of running in polynomial time.

Algorithm 2 Construction of P1, . . . , Pk

Input: k-disjoint subsets Bi, . . . , Bk

Output: A k-partition Pi, . . . , Pk of V
Pi = Bi, for1 ≤ i ≤ k − 1, Pk=V \ (∪k−1i=1 Pi)
while (∃ S ⊂ Pi \Bi and i 6= j such that w(S → Pi) < w(S → Pj)) do

Pi = Pi \ S
Merge S with argmaxPjw(S → Pj)
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The above algorithm terminates with the following two properties[GT13]

1. ∀i, 1 ≤ i ≤ k,Bi ⊆ Pi

2. For any 1 ≤ i ≤ k and any S ⊂ Pi \Bi, we have

w(S → Pi) ≥ w(S → V )/k

Using the second fact, we can say

φ(Pi) ≤
w(Bi → V ) + w(S → V \ Pi)− w(S → Bi)

vol(Bi)
≤ kφ(Bi)

Now we need to obtain a lower bound on φ(G[Pi]). The next lemma shows this.
We define SB := Bi ∩ S;SP := S \Bi;SB := Bi ∩ S and SP := S \Bi.

Lemma 2. φ(G[Pi]) ≥ ε · ρ/14k where ρ ≤ φ(SP ) and ρ ≤ max{φ(SB), φ(SB)}

Proof. The proof is by cases. There are two possible cases based on whether
vol(SB) ≥ vol(SP ) or vice-versa. We do the case when vol(SP ) ≥ vol(SB).
Since volG[Pi](S) ≤ volG(S), we can write

φG[Pi](S) ≥ w(S → Pi)

vol(S)
≥ w(S → Pi \ S) + w(SB → Pi)

2vol(SP )

The last inequality follows from the fact that vol(SP ) ≥ vol(S)/2 and the nu-
merator is essentially w(S → Pi)−w(SB → SP ) which is less than w(S → Pi).
Now we use the fact that ϕ(S,Bi) ≥ ε/3 and after simplyfying a little we get,
φG[Pi](S) ≥ ε · ρG(k + 1)/12k. The other case is fairly straightforward and can
be proved easily.

Note that we can set ρ = ρ(k+1) in the above Lemma. This proves the upper
bound and completes the proof of the second part of the existential theorem.

6 A Local Search Algorithm

Below is a local search algorithm(Algorithm 3) by Trevisan and Gharan[GT13].
Define φin = λk/140k2, φout = 90c0k

6
√
λk−1 and ρ∗ = min{λk/10, 30c0k

5
√
λk−1}
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Algorithm 3 Partitioning G into expanders

Input: k > 1 such that λk > 0
Output:A l-partitioning of G
l = 1, P1 = B1 = V
while (∃1 ≤ i ≤ l such that w(Pi \Bi → Bi) < w(Pi \Bi → Pj) for j 6= i, or
SpectralPartitioning finds S ⊆ Pi such that φG[Pi](S) < φin) do

if max{φ(SB), φ(SB)} ≤ (1 + 1/k)l+1ρ∗ then
Bi = SB , Pl+1 = Bl+1 = SB , Pi = Pi \ SB .
l = l + 1

else if max{ϕ(SB , Bi), ϕ(SB , Bi)} ≤ 1/3k then
Update Bi to one with smaller conductance among SB and SB .

else if φ(SP ) ≤ (1 + 1/k)l+1ρ∗ then
Pl+1 = Bl+1 = SP , Pi = Pi \ SP .
l = l + 1

else if w(Pi \Bi → Bi) < w(Pi \Bi → Pj) for j 6= i then
Remove Pi \Bi from Pi and merge it with Pj .

else if w(SP → Pi) < w(SP → Pj) for j 6= i then
Remove SP from Pi and merge it with argmaxPj

w(SP → Pj).

return P1, . . . , Pl

7 Algorithmic Theorem and its Proof

In this section we present the algorithmic theorem by Trevisan and Gharan.

Theorem 5. ([GT13]) Algorithm 3 finds a l-partitioning P1, . . . , Pl that is a
(Ω(λ2k/k

4), O(k6
√
λk−1))-clustering. If G is unweighted, the algorithm runs in

time polynomial in the size of G.

Proof. The proof proceeds through a sequence of Lemmas.

Lemma 3. Throughout the algorithm

max1≤i≤lφ(Bi) ≤ (1 + 1/k)lρ∗

Proof. The proof of the lemma proceeds by induction. The condition holds true
at the beginning since φ(B1) = φ(V ) = 0. Note that B1, . . . , Bl are affected
only during the first, second and fourth if-statements. In first and fourth, we
can easily verify that φ(Bi) ≤ (1 + 1/k)(l + 1). In the second if-statement, we
must have the condition of the first to be false. Using Induction Hypothesis
and the proof of inductive step from first part of existential theorem, we get the
required result.

From the above lemma, it is easy to that l < k. We state the below three
lemma’s without proof

Lemma 4. The algorithm returns a φ2in/4, φout-clustering.

Proof. (Idea) We use the terminating condition and the proof follows from there
on.

Lemma 5. In each iteration at least one of the conditions hold.
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Proof. (Idea) Proof proceeds by contradiction and uses Lemma 2 to show that
if none of the conditions hold then φ(S) > φin which contradicts Lemma 4.

Lemma 6. The algorithm eventually terminates and if the graph is unweighted,
it does so after at most O(kn · |E|) iterations of the loop.

Proof. (Idea) The number of executions of the first and third if-statements is
bounded above by k − 1(since l < k). Also, the second if-statement can run at
most n times. The remaining if-statements can run only |E| times. This gives
the required bound.

This completes the proof of the Algorithmic Theorem.

8 Conclusion

In the paper Partitioning into Expanders[GT13], Gharan and Trevisan signifi-
cantly improve upon the work of Tanaka[Tan12]. Not only that, they propose a
new bi-criteria measure for the measuring quality of a k-clustering. Moreover,
this paper does not use any kind of relaxation of the problem. That approach
is still open.

Even though the gap between ρ(k) and ρ(k+1) seems to have been reduced,

it can be shown that the condition translates to λk+1 ≥ poly(k)λ
1/4
k . This

suggests that the results presented in [GT13] can be improved. The authors
themselves suggest the problem of determining if such a partitioning of G exists
when the gap between λk+1 and λk is only a constant, as an open problem.
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